
PROTEOMICS
Molecular & Cellular

www.mcponline.org

Vol. 3, No. 5
May 2004
ISSN: 1535-9476

O-Sulfonation of Serine and
Threonine

2D-LC-MS/MS Analysis of Rat
Liver Subcellular Fractions

Phosphopeptide Analysis
Using Graphite Powder
Microcolumns

TGF-ββ1 Induce Specifically a
Myofibroblast Phenotype

Gene Expression in Yeast
Responding to Mating
Pheromone

PKC Inhibitor Targets

The Human Erythrocyte
Proteome

Retrograde Injury-regulated
Proteins in Nerve Axoplasm

Translating the Transcriptome

Published by the American Society for Biochemistry and Molecular Biology



Short caption: 
 
Translating the Transcriptome 
 
 
 
 
Explanatory caption: 
 
Proteomes are translated from instructions encrypted in transcriptomes.  Discrepancies between 
mRNA and protein arise, in part, from regulated translation.  The article by MacKay et al., pages 
###-###, combines translation state array analysis and quantitative proteomics to describe global 
changes in gene expression regulated by a MAP kinase pathway,.  The authors thank Kellie Plow 
for design and Jason Laramie for illustration.   



Gene Expression Analyzed by High-resolution
State Array Analysis and Quantitative
Proteomics
RESPONSE OF YEAST TO MATING PHEROMONE*□S

Vivian L. MacKay‡, Xiaohong Li§, Mark R. Flory¶, Eileen Turcott‡, G. Lynn Law‡,
Kyle A. Serikawa‡, X. L. Xu§, Hookeun Lee¶, David R. Goodlett¶, Ruedi Aebersold¶,
Lue Ping Zhao§, and David R. Morris‡�

The transcriptome provides the database from which a
cell assembles its collection of proteins. Translation of
individual mRNA species into their encoded proteins is
regulated, producing discrepancies between mRNA and
protein levels. Using a new modeling approach to data
analysis, a striking diversity is revealed in association of
the transcriptome with the translational machinery. Each
mRNA has its own pattern of ribosome loading, a circum-
stance that provides an extraordinary dynamic range of
regulation, above and beyond actual transcript levels. Us-
ing this approach together with quantitative proteomics,
we explored the immediate changes in gene expression in
response to activation of a mitogen-activated protein ki-
nase pathway in yeast by mating pheromone. Interest-
ingly, in 26% of those transcripts where the predicted
protein synthesis rate changed by at least 3-fold, more
than half of these changes resulted from altered transla-
tional efficiencies. These observations underscore that
analysis of transcript level, albeit extremely important, is
insufficient by itself to describe completely the pheno-
types of cells under different conditions. Molecular &
Cellular Proteomics 3:478–489, 2004.

Genome-wide analysis of gene expression generally in-
volves quantitative surveys of the transcriptome by such pow-
erful technologies as interrogation of microarrays or serial
analysis of gene expression (SAGE), which provide predictors
of physiological state or cellular phenotype. Indeed, genome-
scale transcript analysis has produced clear successes; e.g.
discovery of co-regulated networks of transcripts in yeast
(1–5), intracellular locations of mRNAs (6, 7), and clinically
valuable phenotypes of cancer cells (8).

Despite the powerful information obtained, documentation

of a transcriptome provides only the inventory that is available
for a cell to draw upon for translation under certain physio-
logical conditions. Proteins are the effectors of cell pheno-
type, and their levels and activities do not necessarily corre-
late with mRNA levels (9–12). One source of this lack of
correlation is discrepancies in protein half-lives. A second
arises from the fact that the synthesis of individual protein
species is regulated, not only by transcript level, but by cis
elements that confer unique translational properties on individ-
ual mRNA molecules (13). In light of this latter point, it would be
valuable to supplement mRNA expression patterns with esti-
mates of translation efficiencies of individual transcripts.

Translation occurs on ribosomes, and variable numbers of
ribosomes are loaded onto actively translated mRNAs, form-
ing polysomes of various sizes. The density of ribosome pack-
ing on transcripts is proportional to the rate of synthesis of the
protein products (14, 15). Several groups have carried out
polysome fractionation prior to transcript analysis (16–20), but
in these approaches fractions from sucrose-gradient centrif-
ugation were combined into pools before transcript analysis,
thereby losing the rich information associated with the mRNA
distributions across these fractions. In the present study, we
undertook a “high resolution” analysis of transcript distribu-
tions across these polysome profiles, defining ribosome-load-
ing parameters for each detectable mRNA species. Selective,
quantitatively significant changes in translation of the yeast
transcriptome were found in response to the mating phero-
mone �-factor. Groups of functionally related genes were
found to be co-regulated by a combination of altered tran-
script levels and translational efficiencies; these observations
were supplemented by proteome analysis.

EXPERIMENTAL PROCEDURES

Yeast Cultures—All experiments used either strain BY2125 (MATa
ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 ssd1-d; W303
background; kindly provided by L. Breeden, Fred Hutchinson Cancer
Research Center, Seattle, WA) or a derivative VM1601 with the addi-
tional mutations �his3::TRP1 �upf3::LEU2. For the genome-wide ex-
periments, BY2125 cells were grown at 25 °C in rich-glucose medium
(1% yeast extract, 2% peptone, 2% glucose) to mid-log phase (�1 �
107 cells/ml). For pheromone induction, cells were treated with 10
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�g/ml (7 �M) �-factor (United Biochemical Research, Inc., Seattle,
WA) for 30 min (�30% of a cell cycle under these conditions).

Polysome Fractionation and RNA Isolation—Polysomes were pre-
pared and fractionated by modification of a previously described
method (21, 22) that employed detergent extraction of cell lysates and
centrifugation through sucrose gradients in high salt to disrupt inac-
tive 80S monomers (see supplemental materials).

After centrifugation (see Fig. 2a), fractions from identical gradients
were pooled on ice and adjusted to 0.5% SDS after addition of three
artificial mRNAs to monitor recovery and integrity after purification
(Universal ScoreCard control poly(A)�-RNAs; Amersham Bio-
sciences, Sunnyvale, CA). These “utility control” RNAs were added at
0.075, 0.75, or 15 pg per pooled fraction before precipitation of RNA
at �70 °C with 2.5 volumes 100% ethanol. RNA samples from each
of the 25 pooled fractions were purified using Qiagen RNeasy midi-
kits, and the eluted RNA was precipitated with 1/10 volume of 10 M

LiCl, resuspended in 25 �l of RNase-free H2O, quantitated by absorb-
ance at 260 nm, and stored at �70 °C.

For total unfractionated RNA, 600 ml of cells from the same culture
as the polysome preparation were pelleted, washed with ice-cold
RNase-free water, quick frozen, then subsequently resuspended in
lysis buffer, processed to the clarified lysate stage, and ethanol-
precipitated, as above. The resulting pellet was resuspended in water,
and total RNA was isolated using Qiagen midi-columns followed by
LiCl precipitation. The RNA samples were pooled in a final volume of
1 ml of RNase-free H2O and the A260 was measured.

Specific transcripts were quantitated with quantitative real-time
PCR (Q-PCR)1 using an iCycler (Bio-Rad, Hercules, CA) and SYBR-
green detection of products (according to Bio-Rad’s specifications).
Primers for the reactions were designed to amplify regions of 75–200
nucleotides near the 3� end of the coding region. Q-PCR data were
normalized with one of the artificial utility control RNAs added before
purification of RNA in the gradient fractions (see above).

Microarray Hybridization and Quantitation—For target generation,
80 �g of total RNA from the peak fraction in the polysome region of
the gradient and the equivalent volume from all other fractions was
converted to fluorescently labeled cDNA using Cy3-labeled dCTP
(Amersham Pharmacia Biotech, Uppsala, Sweden) and primed with
oligo-dT25 with a G/C/A 3� anchor as described previously (20). For
each reaction, 31 �l of the “Test spike mix” of Universal ScoreCard
control RNAs was added to monitor labeling and hybridization effi-
ciencies, as well as to generate a standard curve determining the
linear range of the signal intensity. Similarly, 2 mg of unfractionated
total RNA was converted to Cy5-labeled cDNA target after addition of
the “Reference spike mix” of Universal ScoreCard controls. The yield
of the Cy3-labeled target for the peak fraction was 52 pmol of prod-
uct; for each fraction, the entire Cy3-labeled target was mixed with 31
pmol of Cy5-labeled target from unfractionated RNA, then taken to
dryness and resuspended in 80 �l of hybridization buffer (50% form-
amide, 5� SSC, 5� Denhardt’s solution, 0.1% SDS).

Custom yeast high-density microarrays spotted with PCR-ampli-
fied genomic DNAs corresponding to open reading frames (ORFs),
with negative control artificial cDNAs, and with artificial cDNAs for the
Universal ScoreCard control RNAs were produced by the Center for
Expression Array Analysis at the University of Washington (ra.micro-
slu.washington.edu). Each slide represents two arrays of �6000
ORFs comprising nearly the entire yeast genome.

The hybridization mixes of Cy3- and Cy5-labeled targets were
heated at 96 °C for 3 min, cooled on ice for 30 s, and spun briefly. For

each fraction, 40 �l was applied to each of two washed slides,
followed by hybridization and washing as described previously (20).

Normalization and Analysis of Microarray Data—Initial processing
of the raw data included correction based on negative control spots,
calibration with internal standards, RNA recovery correction by utility
controls, as well as filtering those genes of low abundance or with
inconsistent Cy3:Cy5 ratios, as detailed below:

1. Correction by negative controls. All images with intensity val-
ues below those for the negative control cDNA spots were
transformed to be equivalent to the negative controls.

2. Calibration. To correct for possible array-specific effects,
standard curves were generated for each array from 12 repli-
cates of each of 10 standards in the calibration controls added
at different concentrations, as provided by Amersham Bio-
science. By linear interpolation of signal intensity, we calcu-
lated each image’s expression level relative to the absolute
amounts of the artificial calibration controls on the arrays. In
the plus �-factor dataset, two arrays from fraction 4 of the
sucrose gradient were deleted because of poor quality.

3. Recovery correction. After calibration, the expression levels of
the utility controls (added in known amounts to each gradient
fraction before RNA purification) were used to determine
mRNA recovery and to adjust and standardize the Cy3-labeled
target population used on each array.

4. Filtering of genes with low expression values. The same
amount of Cy5-labeled target made from unfractionated RNA
was used for each hybridization, and the image intensity re-
flects the relative abundance of individual transcripts. Using a
paired t test with a significance level of 5%, we filtered out
those mRNAs when a majority of the 100 Cy5 intensity meas-
urements were lower than the low boundary of the linear range
of the Cy5 calibration curve.

5. Filtering of inconsistent ratios. For every gradient fraction,
there are four replicate arrays and hence four repeated meas-
urements of the Cy3:Cy5 ratios. When Cy5 values are low,
ratios for specific mRNAs could become unstable and vary
radically, particularly for the first few fractions where both RNA
concentrations and recoveries are lower than for later frac-
tions. Using the assumptions that repeatedly measured ratios
are largely consistent and do not vary substantially between
two adjacent fractions, we adopted two filtering strategies: 1)
when one of the four measurements is a significant outlier, it is
filtered out in computing the averaged signal, and 2) when two
out of four ratios are extremely high for fraction 1 compared
with the other two ratios, the average of the two low ratio
values is used. Ratios in the first fraction are expected to be
generally low, as it is unlikely that authentic transcripts would
sediment in this fraction under these centrifugation conditions.
Also, the Cy5 expression values for fractions 2 and 5 were low
compared with the other Cy5 signals across the gradient; we
therefore used the averaged Cy5 values from the two neigh-
boring fractions for these calculations.

Assumptions and Derivation of the Multiple Peak Model (MPM)—
Transcripts with varying numbers of ribosomes, ranging from 0 up to
an estimated 25 ribosomes, have different quantized weights, due to
the large size of a ribosome relative to an mRNA. Using sucrose-
gradient centrifugation and fractionation, we can separate this dis-
parate pool of ribosome-bound mRNAs by weight, then identify and
quantify each mRNA species by microarray technology. The individ-
ual mRNA profiles across the gradient provide the weight distribution
for that molecule and hence insight on its translational properties.

The mathematical objective here is to model the weight distribu-
tions of all molecules. Let Yjk denote the abundance measurement for

1 The abbreviations used are: Q-PCR, quantitative real-time PCR;
ORF, open reading frame; ICAT, isotope-coded affinity tag; MS, mass
spectrometry; uORF, upstream ORF; MPM, multiple peak model; CAI,
codon adaptation index; TSAA, translation state array analysis.
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the jth transcript in the kth fraction. Let fk � k denote the fraction
number, from 1 to 25. The fraction number is indicative of the weight
of the mRNA-ribosome complex, which is denoted by wk. Concep-
tually, experimental data of relevance may be represented as in
supplemental Table 1S. The abundance measurement Yjk is the av-
eraged Cy3:Cy5 ratio for the four replicate arrays. Data have been
normalized following the protocol described above. Because the
modeling process is the same for all individual transcripts, we drop
the subscript j for simplicity hereafter, unless noted otherwise.

To facilitate modeling, we make the following assumptions. First,
for each mRNA, the mixture of mRNA complexes has at most four
different particles: mRNP particles, monosomes, polysomes, and an
uncharacterized, rapidly sedimenting component. The second as-
sumption is that the weight of a specific particle distributes as a
Gaussian distribution, centering on the actual weight of the particle
population. This distribution results, at least in part, from diffusion
theory. Let R take value 1, 2, 3, and 4 and denote four different
populations of particles. Under this assumption, the distribution of
abundance given the particle population R may be written by

Y�R	N(�R,� R
2),

where �R is the mean and �R
2 measures the spread of the peak.

Under these two assumptions, one can derive models for the
observed expression levels in the kth fraction interval via the following
steps. First, the abundance in the kth fraction is proportional to the
total number of particles in the interval,

Yk
�
i

I�wk � Di � wk�1� � NE I�wk � D � wk�1�� ,

where the summation is over all particles, indicator I(wk � Di � wk�1)
for the particle in the kth fraction, N represents the total number of
particles, and E[I(wk � Di � wk�1)] represents the expectation. Now
the expectation may be computed as

�
wk

wk�1

g�D�dD � �
wk

wk�1

�
R�1

4

g�D�R�g�R�dD ,

where g(D�R) represents a Gaussian distribution with mean �R and
with the variance �R

2. Resulting from the above derivation is the model
for multiple peaks:

Yk
N�
R�1

4

g�R� �
wk

wk�1

g�D�R�dD � �
R�1

4

�R���wk�1 � �R

	R
�

� ��wk � �R

	R
�	

where �R is the peak height and quantifies the abundance of each
particle, and �(.) is the cumulative distribution function of Gaussian
distribution. The above representation, despite being motivated sta-
tistically, is actually connected with phenomenological theory of sed-
imentation processes in the ultracentrifuge (23). In fact, the mixture of
Gaussian distributions, with appropriate re-parameterization, could
approximate the solutions to the set of partial differential equations
used to describe the consequences of sedimentation and diffusion in
the ultracentrifuge.

Applying the above model to gene expression analysis, we need to
take into account mRNA baseline abundance and random fluctuation

due to uncontrolled random variations. The revised model may now
be written as

Yjk � �j 
 �
R�1

4

�jR���wk�1 � �jR

	jR
� � ��wk � �jR

	jR
�	 
 �jk ,

where �j is the baseline abundance measurement for the jth tran-
script, and �jk is a random variable characterizing variations from all
other sources. With the least-square technique, we can estimate all of
the gene-specific parameters. Using the estimating equation theory,
we can estimate standard errors for all estimated parameters.

Comparison of Polysome Profiles Between Microarray Experi-
ments—From the MPM modeling, values were calculated for the
percent of each transcript in polysomes and its ribosome density, as
well as the relative transcript level (determined from the Cy5 signals).
These values in each of the two experiments were then used to
calculate the �/– ratios (plus �-factor to minus �-factor) for transcript
level, translation efficiency and predicted protein synthetic rate for
each mRNA (see Fig. 4).

ICAT Proteome Analysis—Simultaneously with harvesting cells for
lysis and polysome analysis (see above), four 25-ml culture samples
were harvested and the pellets immediately quick-frozen. Samples
were stored at �80 °C until use. Each cell pellet was briefly washed
in prechilled phosphate-buffered saline containing 1 mM phenylmeth-
ylsulfonylfluoride (Sigma, St. Louis, MO) and then transferred to a
1.7-ml Eppendorf tube. For cell lysis and protein precipitation, trichlo-
roacetic acid (Sigma) was added to a final concentration of 10%, and
the sample was incubated on ice for at least 60 min prior to centrifu-
gation at 14,000 � g for 15 min. Resulting trichloroacetic acid precipi-
tates were washed twice with 90% acetone prior to mild desiccation in
a –20 °C freezer for 20 min. Dried protein samples were resuspended in
isotope-coded affinity tag (ICAT) label buffer (6 M urea, 200 mM Tris, pH
8, 5 mM EDTA, 0.05% SDS). Protein concentration was measured by
bichionic acid assay (Pierce, Rockford, IL), and experimental and con-
trol protein samples were each adjusted to a concentration of 2 mg/ml
in a volume of 0.5 ml. Cysteinyl disulfide linkages were reduced by the
addition of 5 mM Tris(2-carboxyethyl)-phosphine hydrochloride (Pierce)
for 60 min at 37 °C. Following addition of 500 �g of either isotopically
light or heavy cleavable 12/13C ICAT reagent (Applied Biosystems, Fos-
ter City, CA), the protein solutions were incubated at 37 °C for 3 h.
ICAT labeling was quenched by addition of 12 mM dithiothreitol.
Heavy (experimental) and light (control) ICAT-labeled peptide solu-
tions paired for comparison were combined and diluted 10-fold with
20 mM Tris, pH 8.3, 5 mM EDTA, and 20 ng/�l sequencing-grade
modified trypsin (Fisher Scientific, Pittsburgh, PA) and placed in a
37 °C water bath overnight.

ICAT-labeled peptide mixtures were fractionated by strong cation
exchange via high-performance liquid chromatography (HPLC) on a
polysulfoethyl A column (200 � 4.6 mm, 5 �m, 300 Å; PolyLC) using
an Integral HPLC instrument (PerSeptive Biosystems, Foster City,
CA). Fractions (�30) with highest peptide content as indicated by A214

measurements were dried without heat under vacuum for 30 min to
remove acetronitrile. Avidin chromatography was performed using
manual syringe columns (Applied Biosystems) on each selected frac-
tion according to the manufacturer’s recommendations. One-dimen-
sional reversed-phase chromatography with on-line mass spectrom-
etry was performed generally as described (24), but employing a 2-h
binary gradient from 5 to 80% acetonitrile during which each mass
spectrometry (MS) scan was followed by three MS/MS scans.

Tandem MS data were analyzed by Sequest software to determine
protein identity and relative quantitation (25). Statistical robustness of
peptide identifications was determined using Peptide Prophet soft-
ware (26, 27), and relative quantitation of peptide pairs was further
refined using ASAP software (28). Proteomic data was uploaded into
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the Institute for Systems Biology gene expression platform SBEAMS
(Systems Biology Expression Analysis, which can be accessed at
db.systemsbiology.net/sbeams/).

RESULTS

Protein Synthesis as a Function of Ribosome Density—It is
generally accepted that the synthetic rate of a specific protein

is related to the number of ribosomes actively translating its
mRNA. To confirm this relationship, we employed two tran-
scripts of different translational efficiencies dictated by the
presence or absence of an inhibitory (20, 29) upstream ORF
(uORF) (Fig. 1a). Presence of the uORF strongly inhibited
synthesis of His3p (Fig. 1b). After correction for mRNA levels,

FIG. 1. Correlation between protein synthetic rate from a transcript and ribosome loading. a, diagram of the HIS3-HA reporter system.
Plasmids pVW05 (uORF-containing) and pVW06 (no uORF) were derived from pMHY1 and pMHY3 (20, 29) by replacing the GCN4-lacZ ORF
with the HIS3-HA coding sequence (the S. cerevisiae HIS3 ORF with a 3� DNA sequence encoding a C-terminal hemagglutinin epitope).
Expression is from the GCN4 promoter and both constructs have the GCN4 3� UTR and a modified GCN4 5� leader in which 232 nucleotides
of the leader are deleted and replaced with a 33-nucleotide sequence that contains the AdoMetDC uORF or the mutated form (A to G mutation
of the initiating ATG codon) (29). Deletion of UPF3 in VM1601 was necessary to prevent nonsense-mediated degradation of the mRNA,
particularly with the uORF in the leader. b, scan of the pulse-labeled His3-HA protein after immunoprecipitation and electrophoretic separation
on a polyacrylamide gel. Lane 1, Vector control; lanes 2 and 3, two independent isolates transformed with pVW05; lanes 4–6, three
independent isolates transformed with pVW06. For labeling, the transformed cells were grown at 30 °C in methionine-free minimal-glucose
medium with necessary supplements. Culture samples were labeled in 0.3 ml of the same medium containing 0.5–1.0 mCi

35S-EasyTag
EXPRE35S35S Protein Labeling Mix (Perkin-Elmer, Wellesley, MA) for 5 min at 30 °C and processed as described (49). HA-tagged protein was
immunoprecipitated with mouse monoclonal antibody HA.11 (Covance Research Products, Berkeley, CA) and adsorbed to Protein G
Plus-Agarose (Oncogene Research Products, San Diego, CA). Proteins in the redissolved pellet were separated by electrophoresis on a 15%
polyacrylamide gel. c, relative His3-HA protein synthesis and mRNA levels. Labeled His3-HA protein (b) was quantitated with a Storm 840
phosphorimager (Amersham Biosciences). HIS3-HA transcript levels were determined by Q-PCR and normalized to PRP8 and DED1 mRNA
levels (n � 20). d, transcript profiles from sucrose gradient sedimentation of yeast transformed with the two reporter transcripts. HIS3-HA
mRNA was determined by Q-PCR (in quadruplicate, see legend to Fig. 2), normalized to one of the “utility control” RNAs added to the fractions
before RNA purification (see “Experimental Procedures”), and the level in each fraction expressed as percent of total HIS3-HA signal across
the gradient. F, pVW05 (with the uORF); E, pVW06 (ATG to GTG mutation of the uORF). Assignment of polysome size (number of ribosomes
per mRNA) as a function of sedimentation rate in the gradient was based on the A254 profile (see Fig. 2).
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FIG. 2. Polysome profiles for individual mRNA species in gradient fractions. a, experimental strategy for high-resolution TSAA. Clarified
lysates from steady-state growing strain BY2125 were sedimented through high-salt 7–47% sucrose gradients (21, 22) and collected into 25
fractions (see supplemental material for lysis and centrifugation conditions). Polysome profiles were found to vary by less than one-half fraction
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a 12-fold difference in translational efficiency (Protein:RNA,
Fig. 1c) was found between the two transcripts. Cytosol prep-
arations from the same cultures were fractionated by velocity
sedimentation through sucrose gradients. The presence of
the uORF effectively inhibited ribosome loading so that a
majority of the transcript contained only one ribosome or less
(Fig. 1d). In the absence of the uORF, most of the mRNA was
loaded with five to seven ribosomes. These results are con-
sistent with the accepted relationship between ribosome pro-
files and protein synthetic rates (see “Discussion”).

Transcriptome-wide Analysis of Ribosome Loading—Ly-
sates from cultures of steady-state growing yeast were frac-
tionated by sucrose-gradient centrifugation. The transcripts in
the 25 fractions were converted to Cy3-labeled cDNA target
and mixed with a constant amount of Cy5-labeled cDNA
target from unfractionated RNA for hybridization to microar-
rays (Fig. 2a). Thus, the Cy3:Cy5 ratios generate profiles
across the sucrose gradient for each specific transcript, ex-
pressed relative to its abundance in total RNA. The Cy3 and
Cy5 signals were normalized to a standard curve and cor-
rected for RNA recovery through the use of exogenously
added standards; of the 6022 elements on the microarrays,
4928 had Cy5 signals within the linear range of the standard
curve. The Cy3:Cy5 ratios, plotted against fraction number,
were analyzed assuming the MPM (see “Experimental Proce-
dures”). This model assumes a transcript to be distributed
among four compartments: 1) mRNP particles, 2) mono-
somes, 3) polysomes, and 4) rapidly sedimenting material at
the bottom of the gradient. These assumptions were validated
by the fact that 82% (4020) of the individual profiles generated
from a steady-state growing culture fit this model with R2 �

0.7. Specific examples of the data points and fitted curves are
presented in Fig. 2b. It can be seen that gene-specific varia-
tions occur in all parameters that describe the profiles, includ-
ing the relative proportions in the four compartments and the
rate of sedimentation of the polysome peak.

For subsequent analyses, 379 transcripts with ORFs fewer
than 400 nucleotides in length were omitted, because 60%
represented either dubious genes or uncharacterized small
ORFs. Peak 4 was also omitted from detailed analysis of the
data, because it was not clear whether this material was
actually associated with ribosomes. The proportion of tran-

scripts in peak 4 averaged less than 10% across the entire
transcriptome and showed no significant trend as a function of
either transcript abundance or ORF length. Omitting these tran-
scripts did not significantly affect the conclusions drawn here.

For validation, independent sucrose-gradient experiments
were performed and mRNA profiles were examined gene-by-
gene. Of 24 genes examined by Q-PCR or Northern blots,
only one failed to validate the array results. The results from
four of these genes are shown in Fig. 2b. Given that these
results were from independent experiments and analyzed by
quite different technologies, the strong agreement demon-
strates the robustness of this approach to fractionation and
analysis.

The transcriptome of steady-state growing yeast is, on
average, well translated with the transcripts averaging nearly
80% association with polysomes (Fig. 3a). However, at the
level of individual mRNA species, the proportion of a tran-
script located in peak 3 (polysomes) varies widely from gene
to gene. The association of individual transcripts with poly-
somes ranges from 0 to 100% (Fig. 3b), with a slight tendency
to decrease with the less-abundant transcripts.

The average number of ribosomes associated with a par-
ticular transcript (polysome size) is proportional to the rate of
synthesis of the encoded protein. Polysome size is dictated
by: 1) the length of the ORF and 2) the rate of loading of
ribosomes onto an mRNA (translation initiation), relative to
their rate of linear progression along the message. ORF length
is available from the sequence of the yeast genome, and
polysome size was derived from the dataset generated in this
study. Ribosome density (number of ribosomes per 1000
nucleotides of ORF length) is quite disperse across the tran-
scriptome (Fig. 3c), with no strong trend as a function of
transcript abundance. One curious property of ribosome den-
sity, which has also been observed by others (30), is a quite
significant decrease with increasing ORF length (more than
4-fold across the distribution, Fig. 3d).

We have also examined the relationship between codon
adaptation index (CAI) (31) and ribosome density (supplemen-
tal Fig. 1S). Transcripts with more favorable CAI values
(greater than 0.2) show a tendency toward higher ribosome
densities, consistent with higher translational efficiency. Ap-
plying an index value (the AUG CAI or AUG Context Adapta-

among six gradients. The absorbance trace established the positions of mRNAs loaded with 1 to 8 ribosomes, and the positions of higher
oligomers were estimated by extrapolation of a curve fit to these points. For genome-wide microarray hybridization, the poly(A)-containing RNA
in each fraction was converted to Cy3-labeled cDNA target with reverse transcriptase and mixed with Cy5-labeled target made from
unfractionated RNA. Hybidization to the microarrays was carried out with four replicas per fraction. b, top row, Data from microarray analysis
and curves fit to the data points by the MPM (see “Experimental Procedures”). Solid line, Cy3:Cy5 ratios calculated from signal intensities.
Dotted line, Curve fit to the data points. The R2 value and relative distribution (“Dist.”) (derived from curve fitting) among peaks 1 through 4,
respectively, are shown above the graph for each mRNA. For modeling, peak 1 (mRNP particles) was allowed to vary within fractions 1–5, peak
2 (monosomes) was fixed at fraction 7, peak 3 (polysomes) could vary in position within fractions 9–20, and peak 4 was fixed within fractions
21–25. The areas calculated beneath Gaussian curves fit to the peaks yielded the proportional distributions. Results are shown for transcripts
from the following genes: SAG1 (YJR004C), PRP39 (YML046W), SST2 (YLR452C), and HSP104 (YLL026W). Bottom row, Determination of
relative mRNA levels across a polysome sucrose gradient. Total RNA (�2 �g) from the peak fraction in the polysome region of the gradient
and the equivalent volume from all other fractions was converted to cDNA using 0.5 �g oligo-dT25 with a G/C/A 3� anchor and SuperScript II
(Amersham Biosciences) and used in Q-PCR (“Experimental Procedures”).
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tion Index (32)) to the 12 nucleotides surrounding the AUG for
all the ORFs in this database revealed no significant trend
over the total compilation of data (not shown).

Transcripts in Monosomes and mRNP Particles—Because
many of the well-established mechanisms of translational
control involve sequestration of mRNAs into mRNP particles
(peak 1) or monosomes (peak 2) (13, 15, 33, 34), transcripts
enriched in these compartments are likely candidates for
translational control. For example, the transcripts of the GCN4
and HAC1 genes (supplemental Fig. 2S) both have well-es-
tablished mechanisms of translational regulation (35, 36), and
in steady-state growing cells they are found 85 and 80%,
respectively, in the combined mRNP and monosome com-
partments, far above the average value of 10% (Fig. 3a). The
transcripts over-represented in the mRNP and monosome
compartments tend to be low abundance (supplemental Fig.
3S), suggesting that translational control occurs more fre-
quently with the less-abundant proteins. No RNA structural
feature was found to correlate with appearance in this frac-
tion, including CAI, AUG CAI, and estimated lengths of 5� and
3� untranslated regions (data not shown).

The RPL41A transcript has an ORF of only 78 nucleotides
and occurs primarily in monosomes, with a small fraction in
disomes (supplemental Fig. 2S). This represents maximum

loading of this short mRNA (37). In this case, the monosome
is actively translating the encoded protein and, contrasting
RPL41A with GCN4, it is apparent that caution must be ex-
ercised in interpreting monosome peaks.

Changes in Gene Expression During the Response of Yeast
to Pheromone—Because translation state array analysis
(TSAA) provides simultaneous measurements of the level and
translational efficiency of any detectable transcript, it is pos-
sible to globally compare gene expression between cells with
different phenotypes. As a test, we examined the changes in
gene expression in yeast after acute exposure to mating
pheromone. Ratios of treated to untreated cells were calcu-
lated for transcript levels, translational efficiencies, and esti-
mated protein synthesis rates, providing a global view of
changes in gene expression across the entire transcriptome
(Fig. 4). Out of 3874 transcript profiles from TSAA that could
be modeled with an R2 of at least 0.5 under both conditions,
3058 showed less than a 2-fold change in estimated rate of
protein production (gray data points, shown without drop
lines). Of 816 genes that were altered at least 2-fold in esti-
mated protein expression, the change was driven solely by
transcript level in 76% (617 transcripts, red data points on the
diagonal at translation efficiency � 0.5–2.0). The remaining
24% of these transcripts showed at least a 2-fold alteration in

FIG. 3. Global distribution of mRNA in steady-state growing yeast among the four compartments defined by the MPM. a, values
shown (normalized to 1) are the average distribution in each compartment for the 4704 mRNAs with expression values within the linear range
of the standard curves on the microarrays and with R2 values �0.7, indicating good fits with the model. b, the proportion of each transcript
in peak 3 (polysomes) plotted against relative abundance of each of the 4704 mRNAs. The x-axis has been truncated at 600 to improve the
display for the majority of the data points. c, ribosome densities on mRNAs in peak 3 (polysomes). Data shown are for the 4066 transcripts with
at least 50% mRNA in peak 3 and ORF lengths greater than 400 nucleotides (see text). Ribosome density was calculated for each mRNA as
ribosomes per 1000 nucleotides of ORF length, using the average number of ribosomes per mRNA in peak 3 (obtained from modeling). The
x-axis has been truncated at 600 to improve the display for the majority of the data points. d, ribosome density plotted against ORF length.
ORF lengths were obtained from the Saccharomyces Genome Database (genome-www.stanford.edu/Saccharomyces). The x-axis has been
truncated at 4000 to improve the display for the majority of the data points.
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translational efficiency; 163 were translationally up-regulated
(blue data points) and 36 were down-regulated (green data
points). As can be seen from Fig. 4, many of the translationally
controlled genes also changed in transcript level. Customary
transcript array analysis would have ignored those that were
regulated solely at the translational level and would have erred
quantitatively with those transcripts that showed mixed reg-
ulation (see “Discussion”).

It is also of note in Fig. 4 that very few transcripts show
opposing changes in transcript level and ribosome loading in
response to �-factor. These homodirectional changes in tran-
script level and translation are consistent with what was found
recently in response to two other external stimuli (38).

Functional Classification of Regulated Genes Revealed from

Comparing Quantitative Proteomic Analysis with TSAA—A
quantitative comparison of the proteomes of steady-state
growing yeast before and after treatment with �-factor was
carried out using the ICAT methodology (39). From a total of
607 tagged proteins that provided reliable data for identifica-
tion and quantitation, 47 were found to be up-regulated and
79 down-regulated by the criteria used in Table I. After inde-
pendently clustering the results of TSAA and ICAT analysis by
function, those functional groups that were significantly over-
represented in both datasets are listed in Table I along with
the corresponding p values.

Twenty-five genes in the “carboxylic acid transport” cate-
gory were identified as decreasing in expression significantly
in response to �-factor and clustered with highly favorable p
values (Table I). Two of these genes were identified by both
TSAA and ICAT. This category was dominated by genes in-
volved specifically in amino acid transport (19 out of the 25).
The entire gene list from TSAA was searched for additional
genes in amino acid transport, and six more were identified
and added. Two of the genes in the general carboxylic acid
transport category identified from the ICAT analysis were
eliminated because they did not specifically function in amino
acid transport. The TSAA and ICAT results for the complete
set of amino acid transport genes are plotted in Fig. 5a. The
entire category shows a strong bias toward down-regulation
and, of the six additional transcripts added to the dataset
based solely on functional category, only one, AGP3, showed
a predicted increase in expression rate, while the other five
followed the overall trend of this category.

A group of 23 genes, which were found to be elevated in
expression by either TSAA or ICAT (four of these genes were
identified in both analyses), clustered into the category of
“protein catabolism” (Table I). Inspection of this group of
genes showed a strong bias toward the PRE, PUP, RPN, and
RPT families of genes that encode components of the pro-
teasome. Of the 19 up-regulated protein catabolism genes
discovered through TSAA, 12 were from one of these four
gene families, as were six of the eight identified by ICAT (three
were found by both TSAA and ICAT). The TSAA dataset was
examined for additional genes from these four families, and 18
more were added, resulting in a total of 33 genes. TSAA and
ICAT results for these four families of proteasome genes are
plotted in Fig. 5b. Of these 33 genes, only one was signifi-
cantly down-regulated (i.e. below a ratio of 0.75), and in this
case, RPN2, both TSAA and ICAT showed decreased expres-
sion in response to �-factor.

Not surprisingly, one of the most common groups of genes
detected by TSAA comprised those in the pheromone re-
sponse category (Table I). This group was not highly repre-
sented in the results of the ICAT analysis (compare with the
protein catabolism category). Because many pheromone re-
sponse genes have regulatory functions, it is likely that the
levels of their encoded proteins are generally low, making
reliable detection difficult.

FIG. 4. The response of the yeast transcriptome to mating pher-
omone as measured by TSAA. TSAA was used to compare cells
before and after 30-min treatment with �-factor, as described under
“Experimental Procedures.” The data are presented as the ratio of
plus �-factor to minus �-factor for those transcripts that could be
modeled with R2 values �0.5 and that contained ORFs �400 nucle-
otides in length. The ratios of transcript levels (normalized Cy5 sig-
nals), translational efficiencies and calculated protein synthesis rates
are plotted (see “Experimental Procedures” for the bases of these
calculations). The calculated changes in protein expression were
considered “biologically significant” only if the ratio of synthesis rates
was less than 0.5 or greater than 2.0; data points in the “insignificant”
range are colored gray. The red data points are those values where
the changes in translational efficiencies are in the insignificant range.
Those genes for which the ratio of translation efficiencies is �0.5 or
�2.0 are colored green and blue, respectively.

Gene Expression in Yeast Responding to Mating Pheromone

Molecular & Cellular Proteomics 3.5 485



DISCUSSION

The composition of a proteome is the end product of reg-
ulated gene expression; the activities of its component pro-
teins are largely responsible for defining cellular phenotype
under a particular physiological state. We (16, 20) and others
(17–19, 30) have developed experimental approaches to gain
insight into the expression of a proteome by evaluating the
association of a transcriptome with the translational appara-
tus. Prior studies used a somewhat arbitrary division of the
resulting mRNA profiles into two pools, “poorly translated”
and “well translated” transcripts, thereby losing much of the

rich information contained in the complete polysome distribu-
tion. Using recent approaches (this article and Refs. 30 and
38), which assay multiple fractions from sucrose gradients,
one can define with precision, across an entire transcriptome,
the proportion of transcripts actively engaged with polysomes
and, within the polysome compartment itself, the number of
ribosomes associated with each transcript. Furthermore, as
demonstrated here, translation of the transcriptomes of two
different cell populations can be compared.

The rate of synthesis of a particular protein can be ex-
pressed as the number of translationally active transcripts

TABLE I
Functionally related clusters of regulated transcripts identified both by TSAA and ICAT analysisa

GO categories
Number of genes detected by p values

TSAA ICAT Both TSAA ICAT

Expression down-regulated to 0.75 or lower
Carboxylic acid transport 23 4 2 8.9E-08 0.0001
Vitamin/cofactor transport 3 2 2 0.009 0.004
Nuclear protein export 12 3 2 0.0002 0.009
DNA replication fidelity 9 3 1 0.02 0.001

Expression up-regulated to 1.5 or higher
Protein catabolism 19 8 4 0.009 2.1E-06
Response to pheromone 22 2 1 5.0E-07 0.07

a Those genes whose estimated rates of protein expression from TSAA (Fig. 4) were down-regulated to �0.75 or up-regulated to �1.5 by
�-factor, relative to untreated cells, were analyzed (869 genes up and 1081 genes down) using the gene ontology (GO) tools available on the
Saccharomyces Genome Database (www.yeastgenome.org). An identical analysis was carried out with the regulated proteins revealed through
ICAT analysis (49 up- and 79 down-regulated). Those genes that were significantly over-represented in both the TSAA and ICAT datasets are
given above, along with the probabilities that the observed frequencies could have occurred by chance.

FIG. 5. Changes in transcript level, translation, and protein level induced by �-factor for genes encoding amino acid transport and
proteasome components. The ratios, plus �-factor to minus �-factor, obtained from TSAA (red symbols) for transcript levels, translational
efficiencies, and calculated protein synthesis rates (natural logarithms) are plotted as in Fig. 4. The blue symbols are the natural logarithms of
the ICAT ratios for the proteins detected by this methodology, plotted against translational efficiency and transcript level. The grid lines for
synthesis ratio � 1, or e0, are shown in bold. Genes that run counter to the general trend of each functional category in either TSAA or ICAT
are labeled. a, all 25 genes in the “amino acid transport” category detected in TSAA. Two genes were detected in both TSAA and the ICAT
experiment. The outlier, AGP3, were detected only in TSAA. b, all members of the PRE1-10, PUP1-3, RPN1-13, and RPT1-6 gene families that
were detected in either the TSAA or ICAT experiment (33 genes total: 16 by TSAA only, 17 by both ICAT and TSAA). RPN2 was an outlier in
both the ICAT and the TSAA data.
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times the translational efficiency (number of completed pro-
tein molecules produced per mRNA per unit time) (15). Be-
cause, with a few exceptions, the macroscopic rate of nas-
cent peptide elongation seems to be constant across the
transcriptome of a cell (15), the linear ribosome density (ribo-
somes per 1000 nucleotides) should provide a good compar-
ison of rates of peptide completion between transcripts (dis-
cussed further below). To test the validity of this approach, we
employed two transcripts that produced the same protein
(His3p) with different translational efficiencies. As expected,
the better translated transcript was loaded on average with
five to seven ribosomes, while the poorly translated mRNA
was located on monosomes and small polysomes (Fig. 1d).
The ribosome density was calculated in each fraction, multi-
plied by the quantity of the transcript in the corresponding
fraction and summed. From these calculations, the rate of
His3p synthesis from the mRNA lacking the uORF was esti-
mated to be �5-fold higher than the poorly translated tran-
script. Given the necessary assumptions, this is a reasonable
agreement with the experimental observation of a 12-fold
difference in translational efficiency (Fig. 1c). These assump-
tions were: 1) one ribosome on each transcript containing the
uORF is stalled at termination of the uORF (40) and not
actively engaged in translation of His3p, and 2) with an ORF
length for HIS3-HA of 759 nucleotides, most of these tran-
scripts are bound by fewer than 10 ribosomes (13 ribosomes
per 1000 nucleotides; see Fig. 3c). The average signal in
fractions 20–25 for the uORF-containing construct (Fig. 1d)
therefore provided a baseline value that was subtracted from
all fractions of both gradients.

One of the striking features of the two datasets reported
here is the extraordinary diversity in translation state across a
transcriptome. Transcripts can vary from being localized
nearly 100% in untranslated mRNP particles to essentially
complete association with polysomes. In addition, the linear
density of ribosomes along an mRNA was found to range from
a maximum of approximately one ribosome per 30 nucleo-
tides, which is the length of mRNA protected by a single
eukaryotic ribosome from nuclease digestion (41), to less than
one per 1000 nucleotides. Ribosome density is determined by
the relative rates of initiation (ribosome loading) and peptide
chain elongation (ribosome movement). Although translation
is generally controlled at initiation (15), fluctuations in ob-
served ribosome density for some transcripts could arise in
principle from variations in elongation rate. Also, it should be
underscored that these values are average densities across a
transcript and that, for some mRNAs, changes either in elon-
gation rate along the length of the message or in termination
rate could result in localized regions of altered ribosome
density.

This study of yeast cultures responding to �-factor demon-
strated several features of the TSAA methodology. First and
foremost, analysis of translation state appears to be robust
and reproducible from sample to sample. This is clearly illus-

trated by the fact that only a fraction of the transcripts eval-
uated (325 out of 3874) showed significant differences in
translation state between the extracts from treated and un-
treated cells. Second, because independent analysis of these
cells by TSAA and ICAT yielded overlapping functional groups
of co-regulated genes, it seems that the assumptions that
went into estimating protein synthesis rate from ribosome
loading onto transcripts were warranted, at least for those
proteins and transcripts that were detected by both methods.
In comparing TSAA estimates of changes in rates of synthesis
with proteome measurements, the ICAT ratios were usually
smaller. This was expected because estimates of ribosome
loading reflect the instantaneous rate of protein synthesis,
while proteome measurements integrate the balance between
synthesis and degradation over the course of the experiment.
Therefore, except for proteins with very short half-lives, one
would anticipate only qualitative agreement between the two
measurements. Examples of wide discrepancy between the
two approaches would suggest instances of regulated protein
stability.

The combined TSAA and ICAT analysis revealed a strongly
coordinated up-regulation of proteins of the proteasome, in-
cluding components of both the 20S catalytic complex (the
PRE and PUP genes) and the 19S regulatory complex (the
RPN and RPT genes). There are several known examples of
specific ubiquitination and degradation by proteasomes in S.
cerevisiae that are related to pheromone response (42–46).
Perhaps the increased synthesis of proteasome subunits
detected by ICAT and TSAA represents preparation for
recovery from pheromone response, through degradation of
key regulatory proteins such as Far1p (44, 45) and Ste7p (46),
and re-entry into the mitotic cell cycle. Progression through
the cell cycle is regulated in part by ubiquitin-proteasome
proteolysis (47).

An extensive study of the response of transcript levels to
�-factor has been published (48). With our current experimen-
tal paradigm, a robust dataset of transcript levels (Cy5 values)
was created containing 100 replicas each in the presence and
absence of �-factor. Using 3-fold increases or decreases in
transcript level as a measure of biological significance,
changes were seen in 376 genes of the 5227 where the Cy5
measurement was greater than background in at least one of
the two conditions. Of these 376 transcripts, 101 were identified
as changing in the previous study (48). In addition, 79 of these
with altered transcript levels also changed at least 2-fold in
translation efficiency. Of the 3874 transcripts for which ribo-
some loading was analyzed in this study, 325 showed at least a
2-fold change in translation efficiency but only 44 of these also
had significant (3-fold) transcript changes.

The outcome of this study is clear: each species of mRNA
is unique, not only with respect to the protein it encodes, but
also in its interaction with the translational machinery. Trans-
lation of the transcriptome is highly diverse both qualitatively
and quantitatively, and it is impossible to assume a simple,
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linear relationship between the level of an mRNA and the rate
of synthesis of its encoded protein. Furthermore, although
translational control seems to be quite selective, ribosome
loading can change with physiological state and, together
with altered protein stability, can produce dramatic discrep-
ancies between transcript levels and apparent rates of protein
synthesis.
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